SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses

نویسندگان

  • Jason L. Brown
  • Joseph R. Bennett
  • Connor M. French
چکیده

SDMtoolbox 2.0 is a software package for spatial studies of ecology, evolution, and genetics. The release of SDMtoolbox 2.0 allows researchers to use the most current ArcGIS software and MaxEnt software, and reduces the amount of time that would be spent developing common solutions. The central aim of this software is to automate complicated and repetitive spatial analyses in an intuitive graphical user interface. One core tenant facilitates careful parameterization of species distribution models (SDMs) to maximize each model's discriminatory ability and minimize overfitting. This includes carefully processing of occurrence data, environmental data, and model parameterization. This program directly interfaces with MaxEnt, one of the most powerful and widely used species distribution modeling software programs, although SDMtoolbox 2.0 is not limited to species distribution modeling or restricted to modeling in MaxEnt. Many of the SDM pre- and post-processing tools have 'universal' analogs for use with any modeling software. The current version contains a total of 79 scripts that harness the power of ArcGIS for macroecology, landscape genetics, and evolutionary studies. For example, these tools allow for biodiversity quantification (such as species richness or corrected weighted endemism), generation of least-cost paths and corridors among shared haplotypes, assessment of the significance of spatial randomizations, and enforcement of dispersal limitations of SDMs projected into future climates-to only name a few functions contained in SDMtoolbox 2.0. Lastly, dozens of generalized tools exists for batch processing and conversion of GIS data types or formats, which are broadly useful to any ArcMap user.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic diversity within the Iranian spiny-tailed lizards and predicting species distribution in climate change conditions

There are different methods to investigate the effects of climatic fluctuations on the biota, two of which, molecular phylogeography and SDM, are the most useful tools to trace the past climate induced modifications on species’ geographic distributions. In this study, seven samples were collected from the species distribution range in Iran for the purpose of measuring the genetic variation with...

متن کامل

LecoS - A QGIS plugin for automated landscape ecology analysis

The quantification of landscape structures is an important part in many ecological analysis dealing with GIS derived satellite data. This paper introduces a new free and open-source tool for conducting landscape ecology analysis. LecoS is able to compute a variety of basic and advanced landscape metrics in an automatized way by iterating through an optional provided vector layer. It is integrat...

متن کامل

Investigation of Genetic Diversity and Structure Analysis of Different Citrus Genotypes Using ISSR Markers

In breeding programs, it is necessary having knowledge of the relatedness and genetic diversity in germplasm pools. The spread of cultivated regions and the high levels of production indicates citrus importance in the global economy. Therefore, 110 citrus genotypes were evaluated using 12 ISSR markers. Overall, 154 polymorphic bands were scored with an average of 12.8 alleles per primer. The po...

متن کامل

Distributed Generation Expansion Planning Considering Load Growth Uncertainty: A Novel Multi-Period Stochastic Model

Abstract – Distributed generation (DG) technology is known as an efficient solution for applying in distribution system planning (DSP) problems. Load growth uncertainty associated with distribution network is a significant source of uncertainty which highly affects optimal management of DGs. In order to handle this problem, a novel model is proposed in this paper based on DG solution, consideri...

متن کامل

LAGA: A Software for Landscape Allocation using Genetic Algorithm

In this paper, Landscape Allocation using Genetic Algorithm (LAGA), a spatial multi-objective land use optimization software is introduced. The software helps in searching for optimal land use when multiple objectives such as suitability, area, cohesion and edge density indices are simultaneously involved. LAGA is a flexible and easy to use genetic algorithm-based software for optimizing the sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017